Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 111
Filter
1.
ACS Appl Mater Interfaces ; 15(22): 26340-26348, 2023 Jun 07.
Article in English | MEDLINE | ID: covidwho-20241598

ABSTRACT

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection relies on its spike protein binding to angiotensin-converting enzyme 2 (ACE2) on host cells to initiate cellular entry. Blocking the interactions between the spike protein and ACE2 offers promising therapeutic opportunities to prevent infection. We report here on peptide amphiphile supramolecular nanofibers that display a sequence from ACE2 in order to promote interactions with the SARS-CoV-2 spike receptor binding domain. We demonstrate that displaying this sequence on the surface of supramolecular assemblies preserves its α-helical conformation and blocks the entry of a pseudovirus and its two variants into human host cells. We also found that the chemical stability of the bioactive structures was enhanced in the supramolecular environment relative to the unassembled peptide molecules. These findings reveal unique advantages of supramolecular peptide therapies to prevent viral infections and more broadly for other targets as well.


Subject(s)
COVID-19 , Nanofibers , Humans , SARS-CoV-2/metabolism , Angiotensin-Converting Enzyme 2/metabolism , Protein Binding , Peptides/pharmacology , Peptides/metabolism
2.
Int J Mol Sci ; 24(9)2023 May 05.
Article in English | MEDLINE | ID: covidwho-2312704

ABSTRACT

The binding properties of synthetic and recombinant peptides derived from N-terminal part of ACE2, the main receptor for SARS-CoV-2, were evaluated. Additionally, the ability of these peptides to prevent virus entry in vitro was addressed using both pseudovirus particles decorated with the S protein, as well as through infection of Vero cells with live SARS-CoV-2 virus. Surprisingly, in spite of effective binding to S protein, all linear peptides of various lengths failed to neutralize the viral infection in vitro. However, the P1st peptide that was chemically "stapled" in order to stabilize its alpha-helical structure was able to interfere with virus entry into ACE2-expressing cells. Interestingly, this peptide also neutralized pseudovirus particles decorated with S protein derived from the Omicron BA.1 virus, in spite of variations in key amino acid residues contacting ACE2.


Subject(s)
COVID-19 , SARS-CoV-2 , Animals , Chlorocebus aethiops , Humans , SARS-CoV-2/metabolism , Vero Cells , Angiotensin-Converting Enzyme 2/metabolism , Protein Binding , Peptides/pharmacology , Peptides/metabolism
3.
J Control Release ; 358: 476-497, 2023 06.
Article in English | MEDLINE | ID: covidwho-2315404

ABSTRACT

Antiviral peptides and antiviral polysaccharides can play a major role in the prevention and treatment of emerging viral health problems. These antiviral compounds are biocompatible, environmentally friendly, non-toxic, and cost-effective, yet are poorly water soluble and vulnerable to enzymatic (protease) degradation within the aggressive intercellular microenvironment. Therefore, they should be properly protected and delivered to viruses and host cells by the well-designed nanocarriers that mimic viruses in terms of size, morphology, and smart function. This literature review is meant to introduce the latest advances (mainly within the past five years) in antiviral nano-assemblies comprising antiviral peptides or antiviral polysaccharides. To the best of our knowledge, there is no similar study in the literature that has solely and sufficiently investigated such antiviral nanomaterials partially or totally derived from nature. The rational classification of microorganism-, plant-, and animal-derived antiviral polysaccharide and antiviral peptide delivering nanomaterials and exploration of their relevant applications will clarify the promising capacity of these state-of-the-art materials for a number of technologies developed to inactivate viruses.


Subject(s)
COVID-19 , Nanostructures , Virus Diseases , Viruses , Animals , Antiviral Agents/chemistry , SARS-CoV-2 , Virus Diseases/drug therapy , Peptides/metabolism , Polysaccharides
4.
Pharmacol Rev ; 74(4): 1051-1135, 2022 10.
Article in English | MEDLINE | ID: covidwho-2243608

ABSTRACT

Discovered more than 30 years ago, the angiotensin AT2 receptor (AT2R) has evolved from a binding site with unknown function to a firmly established major effector within the protective arm of the renin-angiotensin system (RAS) and a target for new drugs in development. The AT2R represents an endogenous protective mechanism that can be manipulated in the majority of preclinical models to alleviate lung, renal, cardiovascular, metabolic, cutaneous, and neural diseases as well as cancer. This article is a comprehensive review summarizing our current knowledge of the AT2R, from its discovery to its position within the RAS and its overall functions. This is followed by an in-depth look at the characteristics of the AT2R, including its structure, intracellular signaling, homo- and heterodimerization, and expression. AT2R-selective ligands, from endogenous peptides to synthetic peptides and nonpeptide molecules that are used as research tools, are discussed. Finally, we summarize the known physiological roles of the AT2R and its abundant protective effects in multiple experimental disease models and expound on AT2R ligands that are undergoing development for clinical use. The present review highlights the controversial aspects and gaps in our knowledge of this receptor and illuminates future perspectives for AT2R research. SIGNIFICANCE STATEMENT: The angiotensin AT2 receptor (AT2R) is now regarded as a fully functional and important component of the renin-angiotensin system, with the potential of exerting protective actions in a variety of diseases. This review provides an in-depth view of the AT2R, which has progressed from being an enigma to becoming a therapeutic target.


Subject(s)
Receptor, Angiotensin, Type 2 , Renin-Angiotensin System , Angiotensins/metabolism , Angiotensins/pharmacology , Binding Sites , Humans , Ligands , Peptides/chemistry , Peptides/metabolism , Peptides/pharmacology , Receptor, Angiotensin, Type 1/metabolism , Receptor, Angiotensin, Type 2/metabolism
5.
J Phys Chem B ; 127(4): 855-865, 2023 02 02.
Article in English | MEDLINE | ID: covidwho-2227899

ABSTRACT

The SARS-CoV-2 main protease (Mpro) plays an essential role in viral replication, cleaving viral polyproteins into functional proteins. This makes Mpro an important drug target. Mpro consists of an N-terminal catalytic domain and a C-terminal α-helical domain (MproC). Previous studies have shown that peptides derived from a given protein sequence (self-peptides) can affect the folding and, in turn, the function of that protein. Since the SARS-CoV-1 MproC is known to stabilize its Mpro and regulate its function, we hypothesized that SARS-CoV-2 MproC-derived self-peptides may modulate the folding and the function of SARS-CoV-2 Mpro. To test this, we studied the folding of MproC in the presence of various self-peptides using coarse-grained structure-based models and molecular dynamics simulations. In these simulations of MproC and one self-peptide, we found that two self-peptides, the α1-helix and the loop between α4 and α5 (loop4), could replace the equivalent native sequences in the MproC structure. Replacement of either sequence in full-length Mpro should, in principle, be able to perturb Mpro function albeit through different mechanisms. Some general principles for the rational design of self-peptide inhibitors emerge: The simulations show that prefolded self-peptides are more likely to replace native sequences than those which do not possess structure. Additionally, the α1-helix self-peptide is kinetically stable and once inserted rarely exchanges with the native α1-helix, while the loop4 self-peptide is easily replaced by the native loop4, making it less useful for modulating function. In summary, a prefolded α1-derived peptide should be able to inhibit SARS-CoV-2 Mpro function.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/metabolism , Cysteine Endopeptidases/chemistry , Peptides/pharmacology , Peptides/metabolism , Molecular Dynamics Simulation , Molecular Docking Simulation , Antiviral Agents/chemistry
6.
Biomacromolecules ; 24(1): 141-149, 2023 01 09.
Article in English | MEDLINE | ID: covidwho-2185444

ABSTRACT

The coronavirus disease 2019 (COVID-19) pandemic has threatened the stability of global healthcare, which is becoming an endemic issue. Despite the development of various treatment strategies to fight COVID-19, the currently available treatment options have shown varied efficacy. Herein, we have developed an avidity-based SARS-CoV-2 antagonist using dendrimer-peptide conjugates (DPCs) for effective COVID-19 treatment. Two different peptide fragments obtained from angiotensin-converting enzyme 2 (ACE2) were integrated into a single sequence, followed by the conjugation to poly(amidoamine) (PAMAM) dendrimers. We hypothesized that the strong multivalent binding avidity endowed by dendrimers would help peptides effectively block the interaction between SARS-CoV-2 and ACE2, and this antagonist effect would be dependent upon the generation (size) of the dendrimers. To assess this, binding kinetics of the DPCs prepared from generation 4 (G4) and G7 PAMAM dendrimers to spike protein of SARS-CoV-2 were quantitatively measured using surface plasmon resonance. The larger dendrimer-based DPCs exhibited significantly enhanced binding strength by 3 orders of magnitude compared to the free peptides, whereas the smaller one showed a 12.8-fold increase only. An in vitro assay using SARS-CoV-2-mimicking microbeads also showed the improved SARS-CoV-2 blockade efficiency of the G7-peptide conjugates compared to G4. In addition, the interaction between the DPCs and SARS-CoV-2 was analyzed using molecular dynamics (MD) simulation, providing an insight into how the dendrimer-mediated multivalent binding effect can enhance the SARS-CoV-2 blockade. Our findings demonstrate that the DPCs having strong binding to SARS-CoV-2 effectively block the interaction between ACE2 and SARS-CoV-2, providing a potential as a high-affinity drug delivery system to direct anti-COVID payloads to the virus.


Subject(s)
COVID-19 , Dendrimers , Humans , Angiotensin-Converting Enzyme 2/metabolism , COVID-19 Drug Treatment , Dendrimers/pharmacology , Peptides/pharmacology , Peptides/metabolism , Peptidyl-Dipeptidase A/chemistry , Peptidyl-Dipeptidase A/metabolism , Protein Binding , SARS-CoV-2 , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/metabolism
7.
Viruses ; 15(1)2023 Jan 12.
Article in English | MEDLINE | ID: covidwho-2200877

ABSTRACT

The ß-Coronavirus mouse hepatitis virus (MHV-A59)-RSA59 has a patent stretch of fusion peptide (FP) containing two consecutive central prolines (PP) in the S2 domain of the Spike protein. Our previous studies compared the PP-containing fusogenic-demyelinating strain RSA59(PP) to its one proline-deleted mutant strain RSA59(P) and one proline-containing non-fusogenic non-demyelinating parental strain RSMHV2(P) to its one proline inserted mutant strain RSMHV2(PP). These studies highlighted the crucial role of PP in fusogenicity, hepato-neuropathogenesis, and demyelination. Computational studies combined with biophysical data indicate that PP at the center of the FP provides local rigidity while imparting global fluctuation to the Spike protein that enhances the fusogenic properties of RSA59(PP) and RSMHV2(PP). To elaborate on the understanding of the role of PP in the FP of MHV, the differential neuroglial tropism of the PP and P mutant strains was investigated. Comparative studies demonstrated that PP significantly enhances the viral tropism for neurons, microglia, and oligodendrocytes. PP, however, is not essential for viral tropism for either astroglial or oligodendroglial precursors or the infection of meningeal fibroblasts in the blood-brain and blood-CSF barriers. PP in the fusion domain is critical for promoting gliopathy, making it a potential region for designing antivirals for neuro-COVID therapy.


Subject(s)
Murine hepatitis virus , Spike Glycoprotein, Coronavirus , Viral Tropism , Animals , Mice , Murine hepatitis virus/physiology , Peptides/metabolism , Proline , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/metabolism , Viral Envelope Proteins/metabolism
8.
Sci Adv ; 8(43): eabq6207, 2022 10 28.
Article in English | MEDLINE | ID: covidwho-2088381

ABSTRACT

The frequent occurrence of viral variants is a critical problem in developing antiviral prophylaxis and therapy; along with stronger recognition of host cell receptors, the variants evade the immune system-based vaccines and neutralizing agents more easily. In this work, we focus on enhanced receptor binding of viral variants and demonstrate generation of receptor-mimicking synthetic reagents, capable of strongly interacting with viruses and their variants. The hotspot interaction of viruses with receptor-derived short peptides is maximized by aptamer-like scaffolds, the compact and stable architectures of which can be in vitro selected from a myriad of the hotspot peptide-coupled random nucleic acids. We successfully created the human angiotensin-converting enzyme 2 (hACE2) receptor-mimicking hybrid ligand that recruits the hACE2-derived receptor binding domain-interacting peptide to directly interact with a binding hotspot of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Experiencing affinity boosting by ~500% to Omicron, the de novo selected hACE2 mimic exhibited a great binding tolerance to all SARS-CoV-2 variants of concern.


Subject(s)
COVID-19 , Nucleic Acids , Humans , Angiotensin-Converting Enzyme 2/genetics , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/metabolism , Ligands , Receptors, Virus/metabolism , Peptidyl-Dipeptidase A/metabolism , Protein Binding , Peptides/metabolism , Antiviral Agents
9.
Peptides ; 158: 170898, 2022 Dec.
Article in English | MEDLINE | ID: covidwho-2083017

ABSTRACT

In humans, coronaviruses are the cause of endemic illness and have been the causative agents of more severe epidemics. Most recently, SARS-CoV-2 was the causative agent of the COVID19 pandemic. Thus, there is a high interest in developing therapeutic agents targeting various stages of the coronavirus viral life cycle to disrupt viral propagation. Besides the development of small-molecule therapeutics that target viral proteases, there is also interest molecular tools to inhibit the initial event of viral attachment of the SARS-CoV-2 Spike protein to host ACE2 surface receptor. Here, we leveraged known structural information and peptide arrays to develop an in vitro peptide inhibitor of the Spike-ACE2 interaction. First, from previous co-crystal structures of the Spike-ACE2 complex, we identified an initial 24-residue long region (sequence: STIEEQAKTFLDKFNHEAEDLFYQ) on the ACE2 sequence that encompasses most of the known contact residues. Next, we scanned this 24-mer window along the ACE2 N-terminal helix and found that maximal binding to the SARS-CoV-2 receptor binding domain (CoV2-RBD) was increased when this window was shifted nine residues in the N-terminal direction. Further, by systematic permutation of this shifted ACE2-derived peptide we identified mutations to the wildtype sequence that confer increased binding of the CoV2-RBD. Among these peptides, we identified binding peptide 19 (referred to as BP19; sequence: SLVAVTAAQSTIEEQAKTFLDKFI) as an in vitro inhibitor of the Spike-ACE2 interaction with an IC50 of 2.08 ± 0.38 µM. Overall, BP19 adds to the arsenal of Spike-ACE2 inhibitors, and this study highlights the utility of systematic peptide arrays as a platform for the development of coronavirus protein inhibitors.


Subject(s)
Angiotensin-Converting Enzyme 2 , COVID-19 Drug Treatment , Humans , SARS-CoV-2 , Protein Binding , Peptides/pharmacology , Peptides/metabolism
10.
J Phys Chem B ; 126(41): 8129-8139, 2022 Oct 20.
Article in English | MEDLINE | ID: covidwho-2062148

ABSTRACT

The COVID-19 pandemic has caused significant social and economic disruption across the globe. Cellular entry of SARS-CoV-2 into the human body is mediated via binding of the Receptor Binding Domain (RBD) on the viral Spike protein (SARS-CoV-2 RBD) to Angiotensin-Converting Enzyme 2 (ACE2) expressed on host cells. Molecules that can disrupt ACE2:RBD interactions are attractive therapeutic candidates to prevent virus entry into human cells. A computational strategy that combines our Peptide Binding Design (PepBD) algorithm with atomistic molecular dynamics simulations was used to design new inhibitory peptide candidates via sequence iteration starting with a 23-mer peptide, referred to as SBP1. SBP1 is derived from a region of the ACE2 Peptidase Domain α1 helix that binds to the SARS-CoV-2 RBD of the initial Wuhan-Hu-1 strain. Three peptides demonstrated a solution-phase RBD-binding dissociation constant in the micromolar range during tryptophan fluorescence quenching experiments, one peptide did not bind, and one was insoluble at micromolar concentrations. However, in competitive ELISA assays, none of these peptides could outcompete ACE2 binding to SARS-CoV-2-RBD up to concentrations of 50 µM, similar to the parent SBP1 peptide which also failed to outcompete ACE2:RBD binding. Molecular dynamics simulations suggest that P4 would have a good binding affinity for the RBD domain of Beta-B.1.351, Gamma-P.1, Kappa-B.1.617.1, Delta-B.1.617.2, and Omicron-B.1.1.529 variants, but not the Alpha variant. Consistent with this, P4 bound Kappa-B.1.617.1 and Delta-B.1.617.2 RBD with micromolar affinity in tryptophan fluorescence quenching experiments. Collectively, these data show that while relatively short unstructured peptides can bind to SARS-CoV-2 RBD with moderate affinity, they are incapable of outcompeting the strong interactions between RBD and ACE2.


Subject(s)
Angiotensin-Converting Enzyme 2 , COVID-19 , Humans , SARS-CoV-2 , Spike Glycoprotein, Coronavirus/chemistry , Pandemics , Tryptophan/metabolism , Protein Binding , Peptides/metabolism
11.
Sci Rep ; 12(1): 16236, 2022 09 28.
Article in English | MEDLINE | ID: covidwho-2050539

ABSTRACT

The SARS-CoV-2 prefusion spike protein is characterized by a high degree of flexibility and temporal transformations associated with its multifunctional behavior. In this study, we have examined the dynamics of the Receptor Binding Domain (RBD) of the SARS-CoV-2 spike protein in detail. Its primary, binding subdomain with human Angiotensin Covering Enzyme II includes a highly conspicuous flap or loop that is part of a beta hairpin loop structural motif. Dynamic details of the RBD obtained through RMSF and Order Parameter calculations are consistent with structural details including the stability of "glue" points or dominant interaction energy residues of the RBD in the Up and Down states with its neighboring N-terminal domain (NTD) protomer. The RBD flap in the Up state protomer periodically obstructs the binding site on an approximate 70 ns time interval and is reminiscent of an HIV-1 protease polypeptide flap that opens and closes to modulate that enzymes activity. No claim is made here regarding the possible modulating role of the flap; however, the flap may be a potential site for therapeutic targeting aimed at keeping it in the closed state, as previously demonstrated in the inhibition of the HIV-1 protease polypeptide. The RBD primary binding subdomain is further shown to have not only similar dynamics but, also, an approximate 30% sequence similarity to the HIV-1 protease polypeptide.


Subject(s)
COVID-19 , Spike Glycoprotein, Coronavirus , Angiotensin-Converting Enzyme 2 , Angiotensins/metabolism , HIV Protease , Humans , Peptides/metabolism , Peptidyl-Dipeptidase A/metabolism , Protein Binding , Protein Subunits/metabolism , SARS-CoV-2 , Spike Glycoprotein, Coronavirus/metabolism
12.
ACS Chem Biol ; 17(10): 2911-2922, 2022 Oct 21.
Article in English | MEDLINE | ID: covidwho-2050257

ABSTRACT

Using the regioselective cyanobenzothiazole condensation reaction with an N-terminal cysteine and the chloroacetamide reaction with an internal cysteine, a phage-displayed macrocyclic 12-mer peptide library was constructed and subsequently validated. Using this library in combination with iterative selections against two epitopes from the receptor binding domain (RBD) of the novel severe acute respiratory syndrome virus 2 (SARS-CoV-2) Spike protein, macrocyclic peptides that strongly inhibit the interaction between the Spike RBD and angiotensin-converting enzyme 2 (ACE2), the human host receptor of SARS-CoV-2, were identified. The two epitopes were used instead of the Spike RBD to avoid selection of nonproductive macrocyclic peptides that bind RBD but do not directly inhibit its interactions with ACE2. Antiviral tests against SARS-CoV-2 showed that one macrocyclic peptide is highly potent against viral reproduction in Vero E6 cells with an EC50 value of 3.1 µM. The AlphaLISA-detected IC50 value for this macrocyclic peptide was 0.3 µM. The current study demonstrates that two kinetically controlled reactions toward N-terminal and internal cysteines, respectively, are highly effective in the construction of phage-displayed macrocyclic peptides, and the selection based on the SARS-CoV-2 Spike epitopes is a promising methodology in the identification of peptidyl antivirals.


Subject(s)
Bacteriophages , COVID-19 Drug Treatment , Humans , Angiotensin-Converting Enzyme 2 , SARS-CoV-2 , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/metabolism , Epitopes/metabolism , Peptide Library , Cysteine/metabolism , Protein Binding , Peptides/pharmacology , Peptides/metabolism , Antiviral Agents/pharmacology , Bacteriophages/metabolism
13.
J Org Chem ; 87(18): 12041-12051, 2022 09 16.
Article in English | MEDLINE | ID: covidwho-2016521

ABSTRACT

The development of molecules able to target protein-protein interactions (PPIs) is of interest for the development of novel therapeutic agents. Since a high percentage of PPIs are mediated by α-helical structure at the interacting surface, peptidomimetics that reproduce the essential conformational components of helices are useful templates for the development of PPIs inhibitors. In this work, the synthesis of a constrained dipeptide isostere and insertion in the short peptide epitope EDLFYQ of the angiotensin-converting enzyme 2 (ACE2) α1 helix domain resulted in the identification of a molecule capable of inhibiting the SARS-CoV-2 ACE2/spike interaction in the micromolar range. Moreover, inhibition of SARS-CoV-2 3CLPro main protease activity was assessed as an additional inhibitory property of the synthesized peptidomimetics, taking advantage of the C-terminal Q amino acid present in both the ACE2 epitope and the Mpro recognizing motif (APSTVxLQ), thus paving the way to the development of multitarget therapeutics toward coronavirus infections.


Subject(s)
COVID-19 , Peptidomimetics , Amino Acids , Angiotensin-Converting Enzyme 2 , Dipeptides , Epitopes , Humans , Peptides/metabolism , Peptides/pharmacology , Peptidomimetics/pharmacology , Protein Binding , SARS-CoV-2 , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/metabolism
14.
FEBS Lett ; 596(19): 2566-2575, 2022 10.
Article in English | MEDLINE | ID: covidwho-2013280

ABSTRACT

SARS-CoV-2 spike (S) protein is crucial for virus invasion in COVID-19. Here, we showed that lipopolysaccharide (LPS) can trigger S protein aggregation at high doses of LPS and S protein. We demonstrated the formation of S protein aggregates by microscopy analyses, aggregation and gel shift assays. LPS at high levels boosts the formation of S protein aggregates as detected by amytracker and thioflavin T dyes that specifically bind to aggregating proteins. We validated the role of LPS by blocking the formation of aggregates by the endotoxin-scavenging thrombin-derived peptide TCP-25. Aggregation-prone sequences in S protein are predicted to be nearby LPS binding sites, while molecular simulations showed stable formation of S protein-LPS higher-order oligomers. Collectively, our results provide evidence of LPS-induced S protein aggregation.


Subject(s)
COVID-19 , Spike Glycoprotein, Coronavirus , Coloring Agents , Humans , Lipopolysaccharides/metabolism , Peptides/metabolism , Protein Aggregates , Protein Binding , SARS-CoV-2 , Spike Glycoprotein, Coronavirus/chemistry , Thrombin/metabolism
15.
Virus Res ; 321: 198915, 2022 Nov.
Article in English | MEDLINE | ID: covidwho-2008179

ABSTRACT

The key structure of the interface between the spike protein of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) and human angiotensin-converting enzyme 2 (hACE2) acts as an essential switch for cell entry by the virus and drugs targets. However, this is largely unknown. Here, we tested three peptides of spike receptor binding domain (RBD) and found that peptide 391-465 aa is the major hACE2-interacting sites in SARS-CoV-2 spike RBD. We then identified essential amino acid residues (403R, 449Y, 454R) of peptide 391-465 aa that were critical for the interaction between the RBD and hACE2. Additionally, a pseudotyped virus containing SARS-CoV-2 spike with individual mutation (R454G, Y449F, R403G, N439I, or N440I) was determined to have very low infectivity compared with the pseudotyped virus containing the wildtype (WT) spike from reference strain Wuhan 1, respectively. Furthermore, we showed the key amino acids had the potential to drug screening. For example, molecular docking (Docking) and infection assay showed that Cephalosporin derivatives can bind with the key amino acids to efficiently block infection of the pseudoviruses with wild type spike or new variants. Moreover, Cefixime inhibited live SARS-CoV-2 infection. These results also provide a novel model for drug screening and support further clinical evaluation and development of Cephalosporin derivatives as novel, safe, and cost-effective drugs for prevention/treatment of SARS-CoV-2.


Subject(s)
Angiotensin-Converting Enzyme 2 , COVID-19 Drug Treatment , Amino Acids/metabolism , Amino Acids, Essential/metabolism , Antiviral Agents/chemistry , Antiviral Agents/pharmacology , Binding Sites , Cefixime , Humans , Molecular Docking Simulation , Peptides/metabolism , Peptidyl-Dipeptidase A/metabolism , Protein Binding , SARS-CoV-2 , Spike Glycoprotein, Coronavirus/chemistry
16.
Chembiochem ; 23(19): e202200471, 2022 10 06.
Article in English | MEDLINE | ID: covidwho-1990432

ABSTRACT

The 68-kDa homodimeric 3C-like protease of SARS-CoV-2, Mpro (3CLpro /Nsp5), is a key antiviral drug target. NMR spectroscopy of this large system proved challenging and resonance assignments have remained incomplete. Here we present the near-complete (>97 %) backbone assignments of a C145A variant of Mpro (Mpro C145A ) both with, and without, the N-terminal auto-cleavage substrate sequence, in its native homodimeric state. We also present SILLY (Selective Inversion of thioL and Ligand for NOESY), a simple yet effective pseudo-3D NMR experiment that utilizes NOEs to identify interactions between Cys-thiol or aliphatic protons, and their spatially proximate backbone amides in a perdeuterated protein background. High protection against hydrogen exchange is observed for 10 of the 11 thiol groups in Mpro C145A , even those that are partially accessible to solvent. A combination of SILLY methods and high-resolution triple-resonance NMR experiments reveals site-specific interactions between Mpro , its substrate peptides, and other ligands, which present opportunities for competitive binding studies in future drug design efforts.


Subject(s)
COVID-19 , Protons , Amides , Antiviral Agents/chemistry , Coronavirus 3C Proteases , Cysteine Endopeptidases/metabolism , Humans , Ligands , Magnetic Resonance Spectroscopy , Peptides/metabolism , Protease Inhibitors , SARS-CoV-2 , Solvents , Sulfhydryl Compounds
17.
J Phys Chem Lett ; 13(32): 7420-7428, 2022 Aug 18.
Article in English | MEDLINE | ID: covidwho-1984350

ABSTRACT

The COVID-19 pandemic has become a global health challenge because of the emergence of distinct variants. Omicron, a new variant, is recognized as a variant of concern (VOC) by the World Health Organization (WHO) because of its higher mutations and accelerated human infection. The infection rate is strongly dependent on the binding rate of the receptor binding domain (RBD) against human angiotensin converting enzyme-2 (ACE2human) receptor. Inhibition of protein-protein (RBDs(SARS-CoV-2/omicron)-ACE2human) interaction has been already proven to inhibit viral infection. We have systematically designed ACE2human-derived peptides and peptide mimetics that have high binding affinity toward RBDomicron. Our peptide mutational analysis indicated the influence of canonical amino acids on the peptide binding process. Herein, efforts have been made to explore the atomistic details and events of RBDs(SARS-CoV-2/omicron)-ACE2human interactions by using molecular dynamics simulation. Our studies pave a path for developing therapeutic peptidomimetics against omicron.


Subject(s)
Angiotensin-Converting Enzyme 2 , COVID-19 Drug Treatment , Biomimetic Materials/therapeutic use , Humans , Mutation , Pandemics , Peptides/metabolism , Peptidyl-Dipeptidase A/chemistry , Protein Binding , SARS-CoV-2 , Spike Glycoprotein, Coronavirus/chemistry
18.
Mol Brain ; 15(1): 71, 2022 08 09.
Article in English | MEDLINE | ID: covidwho-1978784

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a novel coronavirus that has caused a global pandemic Coronavirus Disease 2019 (COVID-19). Currently, there are no effective treatments specifically for COVID-19 infection. The initial step in SARS-CoV-2 infection is attachment to the angiotensin-converting enzyme 2 (ACE2) on the cell surface. We have developed a protein peptide that effectively disrupts the binding between the SARS-CoV-2 spike protein and ACE2. When delivered by nasal spray, our peptide prevents SARS-CoV-2 spike protein from entering lung and olfactory bulb cells of mice expressing human ACE2. Our peptide represents a potential novel treatment and prophylaxis against COVID-19.


Subject(s)
COVID-19 , SARS-CoV-2 , Angiotensin-Converting Enzyme 2 , Animals , Humans , Lung/metabolism , Mice , Olfactory Bulb/metabolism , Peptides/metabolism , Peptidyl-Dipeptidase A/metabolism , Protein Binding , Spike Glycoprotein, Coronavirus
19.
Sci Rep ; 12(1): 12828, 2022 07 27.
Article in English | MEDLINE | ID: covidwho-1960502

ABSTRACT

Binding interactions of the spike proteins of the severe acute respiratory syndrome corona virus 2 (SARS-CoV-2) to a peptide fragment derived from the human angiotensin converting enzyme 2 (hACE2) receptor are investigated. The peptide is employed as capture moiety in enzyme linked immunosorbent assays (ELISA) and quantitative binding interaction measurements that are based on fluorescence proximity sensing (switchSENSE). In both techniques, the peptide is presented on an oligovalent DNA nanostructure, in order to assess the impact of mono- versus trivalent binding modes. As the analyte, the spike protein and several of its subunits are tested as well as inactivated SARS-CoV-2 and pseudo viruses. While binding of the peptide to the full-length spike protein can be observed, the subunits RBD and S1 do not exhibit binding in the employed concentrations. Variations of the amino acid sequence of the recombinant full-length spike proteins furthermore influence binding behavior. The peptide was coupled to DNA nanostructures that form a geometric complement to the trimeric structure of the spike protein binding sites. An increase in binding strength for trimeric peptide presentation compared to single peptide presentation could be generally observed in ELISA and was quantified in switchSENSE measurements. Binding to inactivated wild type viruses could be shown as well as qualitatively different binding behavior of the Alpha and Beta variants compared to the wild type virus strain in pseudo virus models.


Subject(s)
COVID-19 , Nanostructures , Spike Glycoprotein, Coronavirus , Angiotensin-Converting Enzyme 2/metabolism , DNA/metabolism , Humans , Peptides/metabolism , Protein Binding , SARS-CoV-2 , Spike Glycoprotein, Coronavirus/metabolism
20.
ACS Nano ; 16(8): 12305-12317, 2022 Aug 23.
Article in English | MEDLINE | ID: covidwho-1960249

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a serious threat to human health and lacks an effective treatment. There is an urgent need for both real-time tracking and precise treatment of the SARS-CoV-2-infected cells to mitigate and ultimately prevent viral transmission. However, selective triggering and tracking of the therapeutic process in the infected cells remains challenging. Here, we report a main protease (Mpro)-responsive, mitochondrial-targeting, and modular-peptide-conjugated probe (PSGMR) for selective imaging and inhibition of SARS-CoV-2-infected cells via enzyme-instructed self-assembly and aggregation-induced emission (AIE) effect. The amphiphilic PSGMR was constructed with tunable structure and responsive efficiency and validated with recombinant proteins, cells transfected with Mpro plasmid or infected by SARS-CoV-2, and a Mpro inhibitor. By rational construction of AIE luminogen (AIEgen) with modular peptides and Mpro, we verified that the cleavage of PSGMR yielded gradual aggregation with bright fluorescence and enhanced cytotoxicity to induce mitochondrial interference of the infected cells. This strategy may have value for selective detection and treatment of SARS-CoV-2-infected cells.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Antiviral Agents/pharmacology , Antiviral Agents/chemistry , Coronavirus 3C Proteases , Peptides/pharmacology , Peptides/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL